The Pythagoreans discovered the existence of incommensurable lines, or of . This was, doubtless, first discovered with reference to the diagonal of a square which is incommensurable with the side, being in the ratio to it of √2 to 1. The Pythagorean proof of this particular case survives in Aristotle and in a proposition interpolated in Euclid's Book X.; it is by a proving that, if the diagonal is commensurable with the side, the same number must be both odd and even. This discovery of the incommensurable... showed that the theory of proportion invented by Pythagoras was not of universal application and therefore that propositions proved by means of it were not really established. ...The fatal flaw thus revealed in the body of geometry was not removed till Eudoxus discovered the great theory of proportion (expounded in Euclid's Book V.), which is applicable to incommensurable as well as to commensurable magnitudes.
Thomas Little Heath